Papadamou, Stephanos and Fassas, Athanasios and Kenourgios, Dimitris and Dimitriou, Dimitrios (2020): Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis.
Preview |
PDF
MPRA_paper_100020.pdf Download (976kB) | Preview |
Abstract
We investigate the effects of a google trend synthetic index concerning corona virus, as a composite indicator of searching term and theme, on the implied volatility of thirteen major stock markets, covering Europe, Asia, USA and Australia regions by using panel data analysis along with several model specifications and robustness tests. Increased search queries for COVID-19 not only have a direct effect on implied volatility, but also have an indirect effect via stock returns highlighting a risk-aversion channel operating over pandemic conditions. We show that these direct and indirect effects are stronger in Europe relative to the rest of the world. Moreover, in a PVAR framework, a positive shock on stock returns may calm down google searching about COVID-19 in Europe. Our findings suggest that google based anxiety about COVID-19 contagion effects leads to elevated risk-aversion in stock markets. Understanding the links between investors’ decision over a pandemic crisis and asset prices variability is critical for understanding the policy measures needed in markets and economies.
Item Type: | MPRA Paper |
---|---|
Original Title: | Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis |
Language: | English |
Keywords: | COVID-19 pandemic; google trends; implied volatility; stock returns; panel data |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C33 - Panel Data Models ; Spatio-temporal Models D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D83 - Search ; Learning ; Information and Knowledge ; Communication ; Belief ; Unawareness G - Financial Economics > G1 - General Financial Markets > G12 - Asset Pricing ; Trading Volume ; Bond Interest Rates G - Financial Economics > G1 - General Financial Markets > G14 - Information and Market Efficiency ; Event Studies ; Insider Trading |
Item ID: | 100020 |
Depositing User: | STEFANOS PAPADAMOU |
Date Deposited: | 04 May 2020 11:30 |
Last Modified: | 04 May 2020 11:30 |
References: | Abrigo, M. R., & Love, I. (2016). Estimation of panel vector autoregression in Stata. The Stata Journal, 16(3), 778-804. Afkhami, M., Cormack, L., & Ghoddusi, H. (2017). Google search keywords that best predict energy price volatility. Energy Economics, 67, 17-27. Alfaro, L., Chari, A., Greenland, A. N., & Schott, P. K. (2020). Aggregate and firm-level stock returns during pandemics, in real time (No. w26950). National Bureau of Economic Research. Andrei D., & Hasler, M. (2015). Investor Attention and Stock Market Volatility. The Review of Financial Studies, 28(1), 33-72 Atkeson, Andrew, 2020. What will be the economic impact of COVID-19 in the U.S.? Rough estimates of disease scenarios. NBER Working Paper, w26867. Baker, S. R., Bloom, N., Davis, S. J., & Terry, S. J. (2020b). Covid-induced economic uncertainty (No. w26983). National Bureau of Economic Research. Baker, S. R., Farrokhnia, R. A., Meyer, S., Pagel, M., & Yannelis, C. (2020a). How does household spending respond to an epidemic? consumption during the 2020 covid-19 pandemic (No. w26949). National Bureau of Economic Research. Baker, M., & Wurgler, J. (2007). Investor sentiment in the stock market. Journal of Economic Perspectives, 21(2), 129-152. Baldwin, R. and B. Weder di Mauro (2020). Economics in the Time of COVID-19 (CEPR Press VoxEU.org). Barber, B.M., & T. Odean (2008). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. Review of Financial Studies, 21(2), pp. 785-818 Bekaert, G., Engstrom, E. C., & Xu, N. R. (2019). The time variation in risk appetite and uncertainty (No. w25673). National Bureau of Economic Research. Bekaert, G., & Wu, G. (2000). Asymmetric volatility and risk in equity markets. Review of Financial Studies, 13(1), 1-42. Beck, N., & Katz, J. N. (1995). What to do (and not to do) with time-series cross-section data. American Political Science Review, 89(3), 634-647. Bijl, L., Kringhaug, G., Molnár, P., & Sandvik, E. (2016). Google searches and stock returns. International Review of Financial Analysis, 45, 150-156. Bollerslev, T., Litvinova, J., & Tauchen, G. (2006). Leverage and volatility feedback effects in high frequency data. Journal of Financial Econometrics, 4(3), 353-384. Carrière-Swallow, Y., & Labbé, F. (2013). Nowcasting with Google Trends in an emerging market. Journal of Forecasting, 32(4), 289-298. Chen, H. Y., & Lo, T. C. (2019). Online search activities and investor attention on financial markets. Asia Pacific Management Review, 24(1), 21-26. Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88, 2-9. Corbet, S., Hou, Y. G., Hu, Y., Lucey, B., & Oxley, L. (2020a). Aye Corona! The Contagion Effects of Being Named Corona during the COVID-19 Pandemic (March 26, 2020). Available at SSRN 3561866. Corbet, S., Larkin, C. J., & Lucey, B. M. (2020b). The Contagion Effects of the COVID-19 Pandemic: Evidence from Gold and Cryptocurrencies. Available at SSRN 3564443. Chronopoulos, D. K., Papadimitriou, F. I., & Vlastakis, N. (2018). Information demand and stock return predictability. Journal of International Money and Finance, 80, 59-74. Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. The Journal of Finance, 66(5), 1461-1499. Da, Z., Engelberg, J., & Gao, P. (2015). The sum of all FEARS investor sentiment and asset prices. The Review of Financial Studies, 28(1), 1-32. Delis, M. D., Hasan, I., & Mylonidis, N. (2017). The risk-taking channel of monetary policy in the US: Evidence from corporate loan data. Journal of Money, Credit and Banking, 49(1), 187-213. Dergiades, T., Milas, C., & Panagiotidis, T. (2015). Tweets, Google trends, and sovereign spreads in the GIIPS. Oxford Economic Papers, 67(2), 406-432. Dimpfl, T., & Jank, S. (2016). Can internet search queries help to predict stock market volatility? European Financial Management, 22(2), 171-192. Dimpfl, T., & Kleiman, V. (2019). Investor pessimism and the German stock market: Exploring Google search queries. German Economic Review, 20(1), 1-28. Ding, R., & Hou, W. (2015). Retail investor attention and stock liquidity. Journal of International Financial Markets, Institutions and Money, 37, 12-26. Drake, M. S., Roulstone, D. T., & Thornock, J. R. (2012). Investor information demand: Evidence from Google searches around earnings announcements. Journal of Accounting Research, 50(4), 1001-1040. Duan, H., Wang, S., & Yang, C. (2020). Coronavirus: limit short-term economic damage. Nature, 578(7796), 515. Dzielinski, Michal (2012). Measuring economic uncertainty and its impact on the stock market. Finance Research Letters, 9(3):167-175 Eckstein, Z., & Tsiddon, D. (2004). Macroeconomic consequences of terror: theory and the case of Israel. Journal of Monetary Economics, 51(5), 971-1002. Eichenbaum, M. S., Rebelo, S., & Trabandt, M. (2020). The macroeconomics of epidemics (No. w26882). National Bureau of Economic Research. Fassas, A. P., & Papadamou, S. (2018). Unconventional monetary policy announcements and risk aversion: evidence from the US and European equity markets. The European Journal of Finance, 24(18), 1885-1901. Fleming, J., Ostdiek, B., & Whaley, R. E. (1995). Predicting stock market volatility: A new measure. Journal of Futures Markets, 15(3), 265-302. Fernandes, M., Medeiros, M. C., & Scharth, M. (2014). Modeling and predicting the CBOE market volatility index. Journal of Banking & Finance, 40, 1-10. French, K. R., Schwert, G., & Stambaugh, R. F. (1987). Expected Stock Returns and Volatility. Journal of Financial Economics, 19 (1), 3-29 Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014. Gormsen, N. J., & Koijen, R. S. (2020). Coronavirus: Impact on stock prices and growth expectations. University of Chicago, Becker Friedman Institute for Economics Working Paper (2020-22). Goddard, J., Kita, A., & Wang, Q. (2015). Investor attention and FX market volatility. Journal of International Financial Markets, Institutions and Money, 38, 79-96. Graham, M., Nikkinen, J., & Peltomäki, J. (2019). Web Based Investor Fear Gauge and Stock Market Volatility: An Emerging Market Perspective. Journal of Emerging Market Finance, 0972652719877473. Hamid, A., & Heiden, M. (2015). Forecasting volatility with empirical similarity and Google trends. Journal of Economic Behavior & Organization, 117, 62-81. Hibbert, A. M., Daigler, R. T., & Dupoyet, B. (2008). A behavioral explanation for the negative asymmetric return–volatility relation. Journal of Banking & Finance, 32(10), 2254-2266. Irresberger, F., Mühlnickel, J., & Weiß, G. N. (2015). Explaining bank stock performance with crisis sentiment. Journal of Banking & Finance, 59, 311-329. Joseph, K., Wintoki, M. B., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting, 27(4), 1116-1127. Kalev, P. S., Liu, W. M., Pham, P. K., & Jarnecic, E. (2004). Public information arrival and volatility of intraday stock returns. Journal of Banking & Finance, 28(6), 1441-1467. Kim, N., Lučivjanská, K., Molnár, P., & Villa, R. (2019). Google searches and stock market activity: Evidence from Norway. Finance Research Letters, 28, 208-220. Kollias, C., Papadamou, S., & Arvanitis, V. (2013). Does Terrorism Affect the Stock-Bond Covariance? Evidence from European Countries. Southern Economic Journal, 79(4), 832-848. Kristoufek, L. (2013). Can Google Trends search queries contribute to risk diversification?. Scientific Reports, 3, 2713. Liu, Y., Peng, G., Hu, L., Dong, J., & Zhang, Q. (2019). Using Google Trends and Baidu Index to analyze the impacts of disaster events on company stock prices. Industrial Management & Data Systems, 120(2), 350-365. Metaxas, P. T., & Mustafaraj, E. (2012). Social media and the elections. Science, 338(6106), 472-473. Mondria, J., Wu, T., & Zhang, Y. (2010). The determinants of international investment and attention allocation: Using internet search query data. Journal of International Economics, 82(1), 85-95. Nikkinen, J., & Peltomäki, J. (2020). Crash Fears and Stock Market Effects: Evidence From Web Searches and Printed News Articles. Journal of Behavioral Finance, 21(2), 117-127. Philippas, D., Rjiba, H., Guesmi, K., & Goutte, S. (2019). Media attention and Bitcoin prices. Finance Research Letters, 30, 37-43. Polgreen, P. M., Chen, Y., Pennock, D. M., Nelson, F. D., & Weinstein, R. A. (2008). Using internet searches for influenza surveillance. Clinical infectious diseases, 47(11), 1443-1448. Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific Reports, 3, 1684. Preis, T., Reith, D., & Stanley, H. E. (2010). Complex dynamics of our economic life on different scales: insights from search engine query data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1933), 5707-5719. Ramelli, S., & Wagner, A. F. (2020). Feverish Stock Price Reactions to COVID-19. Swiss Finance Institute Research Paper, (20-12). Ruan, X., & Zhang, J. E. (2016). Investor attention and market microstructure. Economics Letters, 149, 125-130. Smith, G. P. (2012). Google Internet search activity and volatility prediction in the market for foreign currency. Finance Research Letters, 9(2), 103-110. Vlastakis, N., & Markellos, R. N. (2012). Information demand and stock market volatility. Journal of Banking & Finance 36(6), 1808–1821. Vozlyublennaia, N. (2014). Investor attention, index performance, and return predictability. Journal of Banking & Finance, 41, 17-35. Whaley, R. E. (2000). The investor fear gauge. The Journal of Portfolio Management, 26(3), 12-17. Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: The MIT Press. Yung, K., & Nafar, N. (2017). Investor attention and the expected returns of reits. International Review of Economics & Finance, 48, 423-439. Zhang, D., Hu, M., & Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. Finance Research Letters, 101528. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/100020 |